Znajdź odpowiedź na Twoje pytanie o dane sa liczby a = pierwiastek z 3 - 2 b= pierwiastek z 3 + 2 … foczka852 foczka852 05.12.2009

zapytał(a) o 21:48 Kiedy stosujemy wzór na wysokość a pierwsiastek z trzech,a kiedy a pierwiastek z trzech przez dwa ? POtrzebne przy trójkątach. :) Odpowiedzi a pierwiastek trzech przez dwa to kiedy chcesz policzyc pole trojkata rownoboczenegoa pierwiastek z trzech to na wysokosc trojkata rownoboczenego ii to a to jed długosc boku trojkata jakby co ;) wzór na wysokość trójkąta równobocznego to a pierwsiastek z trzech przez dwa wzór na wysokość trójkąta a pierwsiastek z trzech nie istnieje! a pierwiastek trzech przez dwa to kiedy chcesz policzyc pole trojkata rownoboczenegoa pierwiastek z trzech to na wysokosc trojkata rownoboczenegoii to a to jed długosc boku trojkata jakby co ;) Uważasz, że ktoś się myli? lub
Zaokrąglenie liczby: pierwiastek 3 stopnia z 2 i 7/9 podzielić na pierwiastek 3 stopnia z 3/5 do całości jest równe; a.1 b.2 c.3 d.4 rozpisać działanie Potrzebuje na dziś ! ProszęPrzykładjaka jest odległość na osi liczbowej między liczbami a = -9,1 i b = -37-9,1 < -3,7b - a = - 3,7 -(-9,1) = - 3,7 + 9,1 = 5,4Opd. Odległość między liczbami a i b wynosi 5,4. Zapisz opdowiednie nierówności: a) Liczba x jest większa od -2,5b) Liczba a jest mniejsza od 11. c) Liczba x jest Liczba x jest mniejsza lub równa Liczba y jest nieujemnaf) Liczba b jest nie mniejsza niż 8g) Liczba c jest większa niż 11 Answer Liczba 2 nie jest pierwiastkiem pierwotnym modulo 15. A żeby liczba była pierwiastkiem pierwotnym mod 15 jej reszta z dzielenia przez 3 musi być równa 2. Zatem jedynymi potencjalnymi pierwiastkami mod 15 są liczby: 2, 5, 8, 11, 14. żadna z nich nie jest pierwiastkiem, więc nie istnieje pierwiastek pierwotny mod 15.
zuliaaa Użytkownik Posty: 21 Rejestracja: 2 mar 2010, o 18:11 Płeć: Kobieta Lokalizacja: Wrocław Podziękował: 1 raz pierwiastek z 3/2 \(\displaystyle{ \sqrt{ \frac{3}{2} }}\) ile to jest? Lbubsazob Użytkownik Posty: 4672 Rejestracja: 17 maja 2009, o 13:40 Płeć: Kobieta Lokalizacja: Gdańsk Podziękował: 124 razy Pomógł: 978 razy pierwiastek z 3/2 Post autor: Lbubsazob » 16 mar 2010, o 19:13 \(\displaystyle{ \frac{ \sqrt{3} }{ \sqrt{2} }= \frac{ \sqrt{3}\cdot \sqrt{2} }{2}= \frac{ \sqrt{6} }{2} \approx 1,22}\)
Wysokość trójkąta równobocznego o boku długości 6 pierwiastek z dwóch jest równa A. 3 pierwiastek z trzech B. 3 pierwiastek z sześciu C. 6 pierwiastek z trzech D. 2 pierwiastek z sześciu. Zad 2. Obwód trójkąta równobocznego o wysokości 6 jest równy: A. 3+3 pierwiastek z trzech B. 6 pierwiastek z trzech C. 6+6 pierwiastek z
Użytkownik Posty: 30 Rejestracja: 10 gru 2008, o 14:18 Płeć: Kobieta Lokalizacja: Liceum Pierwiastek z pierwiastka Jak się liczy pierwiastek z pierwiastka?? Np. Oblicz: a) \(\displaystyle{ \sqrt{(1+\frac{\sqrt{3}}{2})} =}\) b) \(\displaystyle{ 72\sqrt{\sqrt{3}} =}\) mariuszm Użytkownik Posty: 6812 Rejestracja: 25 wrz 2007, o 01:03 Płeć: Mężczyzna Lokalizacja: 53°02'N 18°35'E Podziękował: 1 raz Pomógł: 1232 razy Pierwiastek z pierwiastka Post autor: mariuszm » 15 mar 2009, o 03:07 a) \(\displaystyle{ \sqrt{ 1+\frac{ \sqrt{3} }{2} }}\) \(\displaystyle{ \sqrt{ \frac{ 2+\sqrt{3} }{2} }}\) \(\displaystyle{ \sqrt{ \frac{ 4+2\sqrt{3} }{4} }}\) \(\displaystyle{ \frac{1+ \sqrt{3} }{2}}\) b) \(\displaystyle{ 72 \sqrt{ \sqrt{3}}=72 \sqrt[4]{3}}\) Gawroon7 Użytkownik Posty: 96 Rejestracja: 1 lis 2011, o 19:48 Płeć: Mężczyzna Lokalizacja: Sądecczyzna Podziękował: 3 razy Pierwiastek z pierwiastka Post autor: Gawroon7 » 6 gru 2011, o 15:07 Wiem że stary temat odrzegwam, ale po co nowy, bo tak patrzę na to zadanie i nie wiem skąd w a) się ostateczny wynik wziął ._. ? Mogłby mnie ktoś oświecić? anna_ Użytkownik Posty: 16299 Rejestracja: 26 lis 2008, o 20:14 Płeć: Kobieta Podziękował: 29 razy Pomógł: 3235 razy Pierwiastek z pierwiastka Post autor: anna_ » 6 gru 2011, o 15:28 \(\displaystyle{ \sqrt{ 1+\frac{ \sqrt{3} }{2} }=\sqrt{ \frac{ 2+\sqrt{3} }{2} }=\sqrt{ \frac{ 4+2\sqrt{3} }{4} }= \sqrt{\frac{1+2 \sqrt{3} +3}{4}} = \sqrt{ \frac{1^2+2 \sqrt{3} + (\sqrt{3} )^2}{4}}=\sqrt{ \frac{(1+ \sqrt{3} )^2}{4}} =\frac{1+ \sqrt{3} }{2}}\) Strona jest miejscem gdzie szybko i za darmo nauczysz się matematyki. To właśnie tu wyjaśnimy krok po kroku jak rozwiązywać zadania, i na co zwracać uwagę ucząc się teorii. Pierwiastki – Spis treści Definicja pierwiastka Pierwiastki – wzory Pierwiastek z pierwiastka Szacowanie pierwiastków Wyłączanie czynnika przed znak pierwiastka Włączanie czynnika pod znak pierwiastka Mnożenie i dzielenie pierwiastków tego samego stopnia Dodawanie i odejmowanie pierwiastków Pierwiastek z potęgi Usuwanie niewymierności z mianownika Potęga o wykładniku wymiernym, a pierwiastkowanie 8 klasa – Spis treści powtórek przed egzaminem w tym także pierwiastki Rozpatrzmy usuwanie niewymierności z mianownika na podstawie przykładu \(\frac{4}{\sqrt{3}}\). Należy usunąć \(\sqrt{3}\) z mianownika. W tym celu całe wyrażenie należy pomnożyć przez liczbę „1”, a w zasadzie przez ułamek, którego licznikiem i mianownikiem jest \(\sqrt{3}\). Otrzymujemy w tym momencie zapis \(\frac{4}{\sqrt{3}}\cdot \frac{\sqrt{3}}{\sqrt{3}}\). Dalej mnożysz przez siebie liczniki i mianowniki, otrzymując wynik w usuniętym pierwiastkiem z mianownika: \(\frac{4\sqrt{3}}{3}\) Jak usunąć niewymierność z mianownika – zadania Zadanie. Usuń niewymierność (pierwiastek) z mianownika. Zobacz na stronie Zobacz na YouTube Zadanie. Usuń niewymierność (pierwiastek) z mianownika ułamka. Zobacz na stronie Zobacz na YouTube W tego typu zadaniach usuwanie pierwiastka z mianownika polega na utworzeniu i zastosowaniu w mianowniku wzoru skróconego mnożenia podanego w zielonej ramce na ilustracji wyżej. Zwróć szczególną uwagę na mianownik i licznik dopisywanego ułamka, którego wartość liczbowa jest równa 1 (ponieważ licznik jest równy mianownikowi). Znak między wyrażeniami w dopisywanym ułamku jest zawsze przeciwny do znaku jaki występuje w mianowniku z którego chcemy usunąć pierwiastek. Jeśli w jednym mianowniku jest „+” to w drugim „-” lub odwrotnie. Zadanie. Wykaż, że liczba \(\frac{1}{7+3\sqrt{3}}+\frac{1}{7-3\sqrt{3}}\) jest wymierna. (Uwaga: usuń niewymierość z mianownika). Treść dostępna po opłaceniu abonamentu Ucz się matematyki już od 25 zł. Instrukcja premium Uzyskaj dostęp do całej strony Wesprzyj rozwój filmów matematycznych Zaloguj się lub Wykup Sprawdź Wykup Anuluj Pełny dostęp do zawartości na 15 dni za dostęp do zawartości na 30 dni za dostęp do zawartości na 45 dni za zł. Anuluj Zadanie. A. wymierną, TAK/NIEB. niewymierną, TAK/NIEC. niedodatnią,TAK/NIE Wskazówka: Wstaw w miejsce x i y wartości z pierwiastkami, a następnie usuń niewymierność z mianowanika. Treść dostępna po opłaceniu abonamentu. Zadanie. Sprawdź , że \(\sqrt{2}=1+\frac{1}{2+\frac{1}{1+\sqrt{2}}}\) Treść dostępna po opłaceniu abonamentu. Zadanie . Wyrażenie \({{\left( \frac{4}{\sqrt{3}+1} \right)}^{2}}\) ma wartość: A. \(\frac{6}{4+2\sqrt{3}}\), TAK/NIEB. \(16-8\sqrt{3}\), TAK/NIEC. 4, TAK/NIE Treść dostępna po opłaceniu abonamentu. Usuwanie niewymierności z mianownika ułamka z matury Zadanie 23. (1 pkt) Matura z matematyki 2013 – maj – poziom podstawowy) Liczba \(\frac{{\sqrt {50} – \sqrt {18} }}{{\sqrt 2 }}\) jest równa \[A.\quad 2\sqrt 2\]\[B.\quad 2\]\[C.\quad 4\]\[D.\quad \sqrt {10} – \sqrt 6\] Treść dostępna po opłaceniu abonamentu. Zadanie 3. (1 pkt) Matura z matematyki 2014 – maj – poziom podstawowy Wartość wyrażenia \(\frac{2}{{\sqrt 3 – 1}} – \frac{2}{{\sqrt 3 + 1}} \) jest równa \[A.\; – 2 \]\[B. – 2\sqrt 3\]\[ \]\[ 3 \] Treść dostępna po opłaceniu abonamentu. Pierwiastki – Spis treści Definicja pierwiastka Pierwiastki – wzory Pierwiastek z pierwiastka Szacowanie pierwiastków Wyłączanie czynnika przed znak pierwiastka Włączanie czynnika pod znak pierwiastka Mnożenie i dzielenie pierwiastków tego samego stopnia Dodawanie i odejmowanie pierwiastków Pierwiastek z potęgi Usuwanie niewymierności z mianownika Potęga o wykładniku wymiernym, a pierwiastkowanie 8 klasa – Spis treści powtórek przed egzaminem w tym także pierwiastki Bądź na bieżąco z
Jak znaleźć kalkulator pierwiastków (krok po kroku): Aby przygotować się do obliczenia pierwiastka kwadratowego, należy pamiętać o podstawowym idealnym pierwiastku kwadratowym. Ponieważ sqrt 1, 4, 9, 16, 25, 100 to 1, 2, 3, 4, 5 i 10. Aby znaleźć wartość sqrt √25, zobaczmy! √25 = √5 * 5. √25 = √52. √25 = 5.
Pierwiastek z 3 przez 2 + pierwiastek z 2 Jaa: Pierwiastek z 3 przez 2 + pierwiastek z 2 i to wszystko podzielone przez minus pierwiastek z 3 ile to będzie bo się pomotałem? 14 wrz 21:10 daras: to chyba będzie cos takiego podobnego do jednej drugiej plus pierwiastek z dwóch trzecich całość razy minus jeden 14 wrz 21:30 . 246 371 89 83 247 463 16 360

pierwiastek z 3 przez 2